0xFF...FF / 10 == 0x19...99
A few weeks ago, I wrote a C++ routine to parse decimal numbers using the overflow detection principles of SafeInt. I couldn’t find anything in the libraries that actually did a good job of checking for overflow.
Briefly, to see if unsigned values A+B overflow, check if (A > MAX_UINT - B). Similarly, A*B will overflow if (A > MAX_UINT / B).
// Convert a string to an unsigned. Returns 'true' iff conversion is legitimate. bool StringToUnsigned( const string& str, unsigned& rUint) { rUint = 0; if (str.empty()) return false; for (unsigned i = 0; i < str.length(); ++i) { if (!isdigit(str[i])) return false; // Check for numeric overflow. if (rUint > numeric_limits<unsigned>::max() / 10) return false; rUint *= 10; unsigned d = str[i] - '0'; if (rUint > numeric_limits<unsigned>::max() - d) return false; rUint += d; } return true; }
While debugging this code, I noticed something interesting. 0xFFFFFFFF divided by ten (0xA) is 0x19999999. This pattern holds for smaller and larger sequences of 0xFF…FF too: 0xFF/10 = 0x19; 0xFFFF/10 = 0x1999; and so on.
I’m not sure how to prove this, but I can prove the closely related result: 0x19…99 * 10 = 0xFF…FA:
10 * N = 8 * N + 2 * N 10 * 0x19...99 = 8 * 0x19...99 + 2 * 0x19...99 0x199...99 = %0001 1001 1001 ... 1001 1001 10 * 0x19...99 = %1100 1100 1100 ... 1100 1000 + %0011 0011 0011 ... 0011 0010 = %1111 1111 1111 ... 1111 1010
A mildly curious result of no value, but it amused me.
blog comments powered by Disqus